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JÖRG FELDVOSS, SALVATORE SICILIANO, AND THOMAS WEIGEL

Abstract. In this paper we investigate the relation between the multiplici-

ties of split strongly abelian p-chief factors of finite-dimensional restricted Lie

algebras and first degree restricted cohomology. As an application we obtain
a characterization of solvable restricted Lie algebras in terms of the multi-

plicities of split strongly abelian p-chief factors. Moreover, we derive some

results in the representation theory of restricted Lie algebras related to the
principal block and the projective cover of the trivial irreducible module of

a finite-dimensional restricted Lie algebra. In particular, we obtain a charac-
terization of finite-dimensional solvable restricted Lie algebras in terms of the

second Loewy layer of the projective cover of the trivial irreducible module.

The analogues of these results are well known in the modular representation
theory of finite groups.

1. Introduction

Let p be an arbitrary prime number, and let G be a finite group whose order
is divisible by p. Moreover, let Fp[G] denote the group algebra of G over the field
Fp with p elements, and let S be an irreducible (unital left) Fp[G]-module. Then
[G : S]p−split denotes the number of p-elementary abelian chief factors or for short
p-chief factors Gj/Gj−1 (1 ≤ j ≤ n) of a given chief series {1} = G0 ⊂ G1 ⊂
· · · ⊂ Gn = G that are isomorphic to S as Fp[G]-modules and for which the exact
sequence {1} → Gj/Gj−1 → G/Gj−1 → G/Gj → {1} splits in the category of
groups. It is well known that [G : S]p−split is independent of the choice of the chief
series of G (see also Theorem 1.2 below).

W. Gaschütz proved the “only if”-part of the following result on split (or com-
plementable) p-chief factors of finite p-solvable groups (see [8, Theorem VII.15.5]).
The converse of Gaschütz’ theorem is due to U. Stammbach [12, Corollary 1]), and
in an equivalent form it was also proved by W. Willems [14, Theorem 3.9].

Theorem 1.1. A finite group G is p-solvable if, and only if, dimFp H
1(G,S) =

dimFp
EndFp[G](S) · [G : S]p−split holds for every irreducible Fp[G]-module S.

Let CG(M) := {g ∈ G | g ·m = m for every m ∈ M} denote the centralizer of
an Fp[G]-module M in G. In order to be able to apply his cohomological charac-
terization of p-solvable groups (see [11, Theorem A]) in the proof of Theorem 1.1,
Stammbach established the following result (see the main result of [12]):
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Theorem 1.2. Let G be a finite group, and let S be an irreducible Fp[G]-module
with centralizer algebra D := EndFp[G](S). Then

[G : S]p−split = dimDH
1(G,S)− dimDH

1(G/CG(S), S)

holds. In particular, [G : S]p−split is independent of the choice of the chief series of
G.

The goal of this paper is to investigate whether analogues of Theorem 1.1 and
Theorem 1.2 hold in the context of restricted Lie algebras. Recently, the authors
have obtained analogues of these results for ordinary Lie algebras (see [6, Theo-
rem 4.3] and [6, Theorem 2.1], respectively). The key result of this paper is a
restricted analogue of Theorem 1.2 (see Theorem 2.2). All the other major results
in this paper are consequences of it and [6, Theorem 5.5]. Let us remark that
the characterizations of solvable restricted Lie algebras by the cohomological and
representation-theoretic properties of this paper ultimately follow from [6, Theo-
rem 4.3]. Contrary to group algebras of finite groups, universal enveloping algebras
of non-zero finite-dimensional Lie algebras are infinite-dimensional. Therefore, the
proof of [6, Theorem 4.3] requires filtration techniques. It would have been possible
to make this paper independent of [6] by using (co-)induced modules for restricted
universal enveloping algebras instead of truncated (co-)induced modules for ordi-
nary universal enveloping algebras. We leave the details to the interested reader,
but give a complete proof of Theorem 2.2 although it follows the argument used in
the proof of [6, Theorem 2.1] very closely. An important tool in the proof is the
restricted analogue of [1, Lemma 2] (see Lemma 2.1) that we prove first and which
might be of independent interest.

As a consequence of Theorem 2.2 and the equivalence (i)⇐⇒(iv) in [6, Theo-
rem 5.5], we obtain the analogue of Theorem 1.1 for split strongly abelian p-chief
factors of restricted Lie algebras (see Theorem 2.6). In the final section we apply
the results obtained in Section 2 to the second Loewy layer of the projective cover
of the trivial irreducible module. The equivalence (i)⇐⇒(ii) in Theorem 3.3 is an
analogue of Willems’ module-theoretic characterization of p-solvable groups (see
[14, Theorem 3.9] and also [12, Corollary 2]) for restricted Lie algebras.

Let 〈X〉F denote the F-subspace of a vector space V over a field F spanned by a
subset X of V . For more notation and some well-known results from the structure
and representation theory of restricted Lie algebras we refer the reader to Chapters
2 and 5 in [13].

2. Split strongly abelian p-chief factors and restricted cohomology

In analogy to group theory we define a p-chief series for a finite-dimensional
restricted Lie algebra L to be an ascending chain 0 = L0 ⊂ L1 ⊂ · · · ⊂ Ln = L of
p-ideals in L such that Lj/Lj−1 is a minimal (non-zero) p-ideal of L/Lj−1 for every
integer j with 1 ≤ j ≤ n. Any Lj/Lj−1 is then called a p-chief factor of L. We
say that Lj/Lj−1 is a strongly abelian p-chief factor if it is an abelian Lie algebra
with zero p-mapping (see [7, p. 565] for the notion of a strongly abelian restricted
Lie algebra).

Observe that strongly abelian p-chief factors are irreducible restricted modules
but this is not the case for arbitrary p-chief factors. Let S be a simple Lie algebra
that is not restrictable, and let L be the minimal p-envelope of S. Then L has no
non-zero proper p-ideals (see [5, Proposition 1.4(1)]), and therefore L is a p-chief
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factor of L which is not irreducible as an L-module, because S is a non-zero proper
L-submodule of L (see [5, Proposition 1.1(1)]). Note also that every p-chief factor
of a solvable restricted Lie algebra is abelian but not necessarily strongly abelian
as any non-zero torus shows.

For an irreducible L-module S and a given p-chief series 0 = L0 ⊂ L1 ⊂ · · · ⊂
Ln = L of L we denote by [L : S]p−split the number of strongly abelian p-chief
factors Lj/Lj−1 that are isomorphic to S as an L-module and for which the exact
sequence 0→ Lj/Lj−1 → L/Lj−1 → L/Lj → 0 splits in the category of restricted
Lie algebras. Since we will show in Theorem 2.2 that [L : S]p−split is independent of
the choice of the p-chief series, we will not indicate the p-chief series in the notation.

Let L be a finite-dimensional restricted Lie algebra over a field F of prime
characteristic, and let u(L) denote the restricted universal enveloping algebra of
L (see [9, p. 192] or [13, p. 90]). Then every restricted L-module is an u(L)-
module and vice versa, and so there is a bijection between the irreducible re-
stricted L-modules and the irreducible u(L)-modules. In particular, as u(L) is
finite-dimensional (see [9, Theorem 12, p. 191] or [13, Theorem 2.5.1(2)]), every
irreducible restricted L-module is finite-dimensional. Following Hochschild [7] we
define the restricted cohomology of L with coefficients in a restricted L-module M
by Hn

∗ (L,M) := Extnu(L)(F,M) for every non-negative integer n.
For any restricted extension E : 0 → M → E → L → 0 of a strongly abelian

restricted Lie algebra M by a restricted Lie algebra L the Hochschild-Serre spectral
sequence for restricted cohomology yields the five-term exact sequence

0→ H1
∗ (L,M)→ H1

∗ (E,M)→ HomL(M,M)
dE2→ H2

∗ (L,M)→ H2
∗ (E,M) .

As for ordinary Lie algebras (see [1, Lemma 2]) one has the following result for the
transgression dE2 which will be needed in the proof of Theorem 2.2.

Lemma 2.1. Let L be a finite-dimensional restricted Lie algebra over a field of
prime characteristic p, let I be a minimal p-ideal of L that is strongly abelian, and
let E denote the equivalence class of the restricted extension 0→ I → L→ L/I → 0.
Then the following statements hold:

(a) If E splits, then the transgression dE2 : HomL(I, I)→ H2
∗ (L/I, I) is zero.

(b) If E does not split, then the transgression dE2 : HomL(I, I)→ H2
∗ (L/I, I) is

injective.

Proof. (a): If π : L → L/I is a homomorphism of restricted Lie algebras, then
π∗ : H2

∗ (L/I, I) → H2
∗ (L, I) is the mapping induced by the pull-back functor.

Suppose that E splits. Then there exists a homomorphism of restricted Lie algebras
σ : L/I → L such that π ◦ σ = idL/I . Consequently, σ∗ ◦ π∗ = idH2

∗(L/I,I)
, and

therefore the inflation π∗ is injective. Hence the exactness of the five-term sequence
implies that dE2 = 0.

(b): It follows from the minimality of I that D := HomL(I, I) is a division
algebra. Then the D-linear restriction H1

∗ (L, I)→ HomL(I, I) is either zero, or its
image contains idI . In the former case the exactness of the five-term sequence yields
that dE2 is injective. In the latter case, there is a restricted derivation D : L → I
such that D|I = idI . Consequently, L = I⊕Ker(D), where Ker(D) is a p-subalgebra
isomorphic to L/I. Hence E splits, which is a contradiction. �
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Remark. If one ignores in the proof of Lemma 2.1 the compatibility of the homo-
morphisms with the p-mappings, then one obtains a conceptual proof of [1, Lemma
2].

We say that a restricted Lie algebra L over F is p-perfect if L = [L,L] + 〈L[p]〉F.
By virtue of [3, Proposition 2.7], L is p-perfect if, and only if, H1

∗ (L,F) = 0. Our
main result is completely analogous to the main result of [12] (see also [6, Theorem
2.1] for the analogue for ordinary Lie algebras):

Theorem 2.2. Let L be a finite-dimensional restricted Lie algebra over a field of
prime characteristic p, and let S be an irreducible L-module with centralizer algebra
D := EndL(S). Then

(1) [L : S]p−split = dimDH
1
∗ (L, S)− dimDH

1
∗ (L/AnnL(S), S)

holds. In particular, [L : S]p−split is independent of the choice of the p-chief series
of L.

Proof. We proceed by induction on the dimension of L. If L is one-dimensional,
then L is either a torus or strongly abelian. For a torus both sides of (1) vanish,
and in the strongly abelian case the only irreducible restricted L-module is trivial,
so that both sides of (1) are also equal. Thus, we may assume that the dimension
of L is greater than one, and that the claim holds for all restricted Lie algebras of
dimension less than dimF L. Let 0 = L0 ⊂ L1 ⊂ · · · ⊂ Ln = L be a p-chief series
of L. For the remainder of the proof the multiplicity [L : S]p−split always refers to
this fixed p-chief series.

If AnnL(S) = 0, then the right-hand side of (1) is zero. But as strongly abelian
p-chief factors have non-zero annihilators, the left-hand side also vanishes and the
assertion holds. Therefore, we may assume that AnnL(S) 6= 0.

We first assume that L1 ⊆ AnnL(S). Then the five-term exact sequence for
restricted cohomology in conjunction with [3, Proposition 2.7] yields the exactness
of

(2)
0 −→ H1

∗ (L/L1, S) −→ H1
∗ (L, S)

−→ HomL(L1/[L1, L1] + 〈L[p]
1 〉F, S) −→ H2

∗ (L/L1, S) .

Since S is also an irreducible restricted L/L1-module, one obtains by induction that

(3) [L/L1 : S]p−split = dimDH
1
∗ (L/L1, S)− dimDH

1
∗ (L/AnnL(S), S) .

As L1 is a minimal p-ideal of L, L1 is either p-perfect or strongly abelian. In the
former case, the third term in (2) vanishes, and thus H1

∗ (L/L1, S) ∼= H1
∗ (L, S).

Since L1 is not strongly abelian, one has [L : S]p−split = [L/L1 : S]p−split. Hence
(1) holds in this case.

If L1 is strongly abelian, one has HomL(L1/[L1, L1]+〈L[p]
1 〉F, S) = HomL(L1, S).

If in addition L1 and S are not isomorphic as L-modules, then HomL(L1, S) = 0,
and the assertion follows as before.

For L1
∼= S one has to distinguish two cases depending on the strongly abelian

p-chief factor L1 being split, or being not split. In case that L1 is split, one has

(4)
[L : S]p−split = [L/L1 : S]p−split + 1

= dimDH
1
∗ (L/L1, S)− dimDH

1
∗ (L/AnnL(S), S) + 1 ,
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and Lemma 2.1(a) shows that the transgression HomL(L1, S) → H2
∗ (L/L1, S) is

zero. The exactness of (2) implies that the restriction H1
∗ (L, S)→ HomL(L1, S) is

surjective, and therefore

(5)
dimDH

1
∗ (L, S) = dimDH

1
∗ (L/L1, S) + dimD HomL(L1, S)

= dimDH
1
∗ (L/L1, S) + 1 .

Hence (4) and (5) yield the assertion. Suppose now that L1 is not split. In this
case Lemma 2.1(b) implies that the transgression HomL(L1, S) → H2

∗ (L/L1, S)
is injective. According to (2), the inflation H1

∗ (L/L1, S) → H1
∗ (L, S) is bijective.

Then one has [L : S]p−split = [L/L1 : S]p−split, and the claim follows from (3).
Finally, assume that L1 6⊆ AnnL(S), i.e., L1 ∩ AnnL(S) = 0 and SL1 = 0.

Suppose that Lj/Lj−1 is strongly abelian and Lj/Lj−1 ∼= S as L-modules for
some integer j with 1 ≤ j ≤ n. Then Lj – and thus L1 – would be contained in
AnnL(S), a contradiction. Hence [L : S]p−split = 0. As SL1 = 0, one concludes
from the beginning of the five-term exact sequence

0 −→ H1
∗ (L/L1, S

L1) −→ H1
∗ (L, S) −→ H1

∗ (L1, S)L −→ H2
∗ (L/L1, S

L1)

that the vertical mappings in the commutative diagram

H1
∗ (L/AnnL(S), S)

α //

��

H1
∗ (L, S)

��
H1
∗ (L1 + AnnL(S)/AnnL(S), S)L

β // H1
∗ (L1, S)L

are isomorphisms. Because β is an isomorphism, α is an isomorphism as well. This
shows that in this case the right-hand side of (1) is also zero.

Since the right-hand side of (1) does not depend on the choice of the p-chief series,
the left-hand side does not either. This completes the proof of the theorem. �

In the extreme case AnnL(S) = L, Theorem 2.2 in conjunction with [3, Propo-
sition 2.7] has the following consequence:

Corollary 2.3. Let L be a finite-dimensional restricted Lie algebra over a field F
of prime characteristic p. Then the trivial irreducible L-module occurs with multi-
plicity dimF L/[L,L] + 〈L[p]〉F as a split strongly abelian p-chief factor of L.

Moreover, the next result follows from Hochschild’s six-term exact sequence re-
lating ordinary and restricted cohomology (see [7, p. 575]) in conjunction with
Corollary 2.3 and [6, Corollary 2.2]. (Here [L : S]split denotes the multiplicity of S
as a split abelian chief factor of the ordinary Lie algebra L.)

Corollary 2.4. Let L be a finite-dimensional restricted Lie algebra over a field F
of prime characteristic p. If S is an irreducible restricted L-module, then

[L : S]p−split

=

{
[L : S]split if S 6∼= F
[L : S]split − dimF(〈L[p]〉F/[L,L] ∩ 〈L[p]〉F) if S ∼= F .

In particular, [L : S]p−split ≤ [L : S]split.

The equality of [L : S]p−split and [L : S]split for non-trivial irreducible restricted
L-modules S explains why the results in Section 5 of [6] could be obtained although
their ingredients belong to different categories.
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Recall that the principal block of a restricted Lie algebra is the block that contains
the trivial irreducible module. For the convenience of the reader we include a proof
of the following result which is completely analogous to the corresponding proof for
modular group algebras (see [11, Proposition 1]).

Proposition 2.5. Every strongly abelian p-chief factor of a finite-dimensional re-
stricted Lie algebra L belongs to the principal block of L.

Proof. Let S = I/J be a strongly abelian p-chief factor of L. In particular, S is a
trivial I-module. Then the five-term exact sequence for restricted cohomology in
conjunction with [3, Proposition 2.7] yields the exactness of

0 −→ H1
∗ (L/I, S) −→ H1

∗ (L/J, S) −→ HomL(S, S) −→ H2
∗ (L/I, S) .

Since the third term is non-zero, the second or fourth term must also be non-zero.
According to [4, Lemma 1(a)], in either case S belongs to the principal block of a
restricted Lie factor algebra of L. Then it follows from [4, Lemma 4] that S also
belongs to the principal block of L. �

The analogue of Theorem 1.1 for restricted Lie algebras is another consequence
of Theorem 2.2 in conjunction with the equivalence (i)⇐⇒(iv) in [6, Theorem 5.5].

Theorem 2.6. Let L be a finite-dimensional restricted Lie algebra over a field F
of prime characteristic p. Then the following statements are equivalent:

(i) L is solvable.
(ii) dimFH

1
∗ (L, S) = dimF EndL(S) · [L : S]p−split holds for every irreducible

L-module S.
(iii) dimFH

1
∗ (L, S) = dimF EndL(S) · [L : S]p−split holds for every irreducible

L-module S belonging to the principal block of L.

Proof. The equivalence of (i) and (ii) is a consequence of Theorem 2.2 and the
equivalence (i)⇐⇒(iv) in [6, Theorem 5.5], and the equivalence of (ii) and (iii)
follows from [4, Lemma 1(a)] in conjunction with Proposition 2.5. �

Remark. It is an immediate consequence of Theorem 2.2 that dimFH
1
∗ (L, S) =

dimF EndL(S) · [L : S]p−split holds for the trivial irreducible L-module S. Hence one
can also obtain Theorem 2.6 immediately from Corollary 2.4 and the equivalence
of (i), (vi), and (vii) in [6, Theorem 5.5]. We included the proof given above since
it is the precise analogue of the proof of [12, Corollary 1].

3. Split strongly abelian p-chief factors and the 0-PIM

Let A be a finite-dimensional (unital) associative algebra with Jacobson radical
Jac(A), and let M be a (unital left) A-module. Then the descending filtration

M ⊃ Jac(A)M ⊃ Jac(A)2M ⊃ Jac(A)3M ⊃ · · · ⊃ Jac(A)`M ⊃ Jac(A)`+1M = 0

is called the Loewy series of M and the factor module Jac(A)n−1M/ Jac(A)nM
is called the nth Loewy layer of M (see [2, Definition 1.2.1] or [8, Definition
VII.10.10a)]).

Recall that a projective module PA(M) is a projective cover of M , if there ex-
ists an A-module epimorphism πM from PA(M) onto M such that the kernel of
πM is contained in the radical Jac(A)PA(M) of PA(M). If projective covers exist,
then they are unique up to isomorphism. It is well known that projective cov-
ers of finite-dimensional modules over finite-dimensional associative algebras exist



SPLIT STRONGLY ABELIAN p-CHIEF FACTORS AND RESTRICTED COHOMOLOGY 7

and are finite-dimensional. Moreover, every projective indecomposable A-module
is isomorphic to the projective cover of some irreducible A-module. In this way one
obtains a bijection between the isomorphism classes of the projective indecompos-
able A-modules and the isomorphism classes of the irreducible A-modules.

In the sequel we use the notation PL(F) := Pu(L)(F) for the projective cover of
the trivial irreducible module of a finite-dimensional restricted Lie algebra L over
a field F of prime characteristic. Using [2, Proposition 2.4.3] and Theorem 2.2 we
obtain a lower bound for the multiplicity [Jac(u(L))PL(F)/ Jac(u(L))2PL(F) : S]
of an irreducible restricted L-module S in the second Loewy layer of PL(F) (see
[14, Theorem 3.7] for the analogue in the modular representation theory of finite
groups):

Theorem 3.1. Let L be a finite-dimensional restricted Lie algebra over a field F
of prime characteristic p. Then

[Jac(u(L))PL(F)/ Jac(u(L))2PL(F) : S] ≥ [L : S]p−split

for every irreducible restricted L-module S.

Proof. We obtain from [2, Proposition 2.4.3] and Theorem 2.2 that

dimF EndL(S) · [Jac(u(L))PL(F)/ Jac(u(L))2PL(F) : S]

= dimF Ext1u(L)(F, S) = dimFH
1
∗ (L, S)

≥ dimFH
1
∗ (L, S)− dimFH

1
∗ (L/AnnL(S), S)

= dimF EndL(S) · [L : S]p−split .

Cancelling dimF EndL(S) yields the desired inequality. �

Remark. If one uses the main result of [12] instead of Theorem 2.2, then the above
proof would also work in the case of finite-dimensional modular group algebras. This
provides an alternative proof of [14, Theorem 3.7].

The following example shows that equality does not necessarily hold in Theo-
rem 3.1. We will see soon that equality holds if, and only if, the restricted Lie
algebra is solvable (see the equivalence (i)⇐⇒(ii) in Theorem 3.3).

Example. Consider the three-dimensional restricted simple Lie algebra L :=
sl2(F) over an algebraically closed field F of characteristic p > 2. Take for S the
(p− 1)-dimensional irreducible restricted L-module. Then it follows from [10, The-
orem 1(ii)] that [Jac(u(L))PL(F)/ Jac(u(L))2PL(F) : S] = 2, but [L : S]p−split = 0.

As an immediate consequence of Theorem 3.1, we obtain the following weak
analogue of a well-known result for finite modular group algebras:

Corollary 3.2. Every split strongly abelian p-chief factor of a finite-dimensional
restricted Lie algebra L is a direct summand of the second Loewy layer of the pro-
jective cover PL(F) of the trivial irreducible L-module. In particular, every split
strongly abelian p-chief factor of a finite-dimensional restricted Lie algebra L is a
composition factor of PL(F).

Question. In view of Corollary 3.2, it is natural to ask whether every strongly
abelian p-chief factor of a finite-dimensional solvable restricted Lie algebra L is a
composition factor of PL(F), or even more generally (see Proposition 2.5), whether
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every irreducible module in the principal block of u(L) is a composition factor of
PL(F) (for an affirmative answer to the analogous question in the modular repre-
sentation theory of finite p-solvable groups see [8, Theorem VII.15.8]).

Finally, we obtain the following characterization of solvable restricted Lie alge-
bras which was motivated by [6, Theorem 5.5] but contrary to the latter allows to
include the trivial irreducible module in the implications (i)=⇒(ii) and (i)=⇒(iii)
(see [14, Theorem 3.9] for the analogue of (i)⇐⇒(ii) in the modular representation
theory of finite groups).

Theorem 3.3. Let L be a finite-dimensional restricted Lie algebra over a field F
of prime characteristic p. Then the following statements are equivalent:

(i) L is solvable.
(ii) [Jac(u(L))PL(F)/ Jac(u(L))2PL(F) : S] = [L : S]p−split for every irreducible

restricted L-module S.
(iii) [Jac(u(L))PL(F)/ Jac(u(L))2PL(F) : S] = [L : S]p−split for every irreducible

restricted L-module S belonging to the principal block of L.

Proof. The equivalence of the three statements is a consequence of Theorem 2.6 in
conjunction with

dimF EndL(S) · [Jac(u(L))PL(F)/ Jac(u(L))2PL(F) : S] = dimFH
1
∗ (L, S) . �

Remark. It follows from the proof of Theorem 3.1 that the equality in statements
(ii) and (iii) of Theorem 3.3 holds for the trivial irreducible L-module. Hence one
can also obtain Theorem 3.3 from Corollary 2.4 and the equivalence of (i), (viii),
and (ix) in [6, Theorem 5.5].
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